Jacob.lsx's Blog
  • 🏠主页
  • 📚文章
  • 🧩标签
  • ⏱时间轴
  • 🙋🏻‍♂️关于
  • 🔍搜索
  • 💾云盘
  • 🖥️编程
主页 » Categories

Features Descriptors

基于 LBD 描述子和成对几何一致性的高效鲁棒线段匹配方法

文章中提出了一种线匹配算法,该算法利用线的局部外观及其几何属性。为了克服线段碎片和几何变化的问题,在尺度空间中提取线。 为了描述线条的局部外观,作者设计了一种名为线带描述符(Line Band Descriptor, LBD)的新型线条描述符。为了评估线对之间的几何一致性,定义了线对之间的几何属性。然后,构建了候选线匹配的关系图,并采用光谱技术来有效地解决这个匹配问题。所提算法的优点如下: (1) 由于采用了多尺度线条检测策略,该算法对图像变换具有很强的鲁棒性;(2) 由于设计的 LBD 描述符计算速度快,且外观相似性降低了图匹配问题的维度,该算法具有很高的效率;(3) 由于采用了成对几何一致性评估方法,该算法即使对于低纹理图像也具有很高的准确性。...

2023-07-20    5518字    12分钟    Jacob.lsx     Feature Detection  Features Descriptors  CV  特征提取  特征描述子  计算机视觉

SUFT 特征

简介 加速鲁棒特征 (Speed Up Robust Feature, SURF) 12 和 SIFT 特征类似,同样是一个用于检测、描述、匹配图像局部特征点的特征描述子。SIFT 是被广泛应用的特征点提取算法,但其实时性较差,如果不借助于硬件的加速和专用图形处理器 (GPUs) 的配合,很难达到实时的要求。对于一些实时应用场景,如基于特征点匹配的实时目标跟踪系统,每秒要处理数十帧的图像,需要在毫秒级完成特征点的搜索定位、特征向量的生成、特征向量的匹配以及目标锁定等工作,SIFT 特征很难满足这种需求。SURF 借鉴了 SIFT 中近似简化 (DoG 近似替代 LoG) 的思想,将 Hessian 矩阵的高斯二阶微分模板简化,使得模板对图像的滤波只需要进行几次简单的加减法运算,并且这种运算与滤波模板的尺寸无关。SURF 相当于 SIFT 的加速改进版本,在特征点检测取得相似性能的条件下,提高了运算速度。整体来说,SURF 比 SIFT 在运算速度上要快数倍,综合性能更优345。 ...

2019-06-08    4957字    10分钟    Jacob.lsx     Feature Detection  Features Descriptors  CV  特征提取  特征描述子  计算机视觉

SIFT 特征

简介 尺度不变特征变换 (Scale-invariant feature transform, SIFT) 12 是计算机视觉中一种检测、描述和匹配图像局部特征点的方法,通过在不同的尺度空间中检测极值点或特征点 (Conrner Point, Interest Point) ,提取出其位置、尺度和旋转不变量,并生成特征描述子,最后用于图像的特征点匹配。SIFT 特征凭借其良好的性能广泛应用于运动跟踪 (Motion tracking) 、图像拼接 (Automatic mosaicing) 、3D 重建 (3D reconstruction) 、移动机器人导航 (Mobile robot navigation) 以及目标识别 (Object Recognition) 等领域3。 ...

2019-06-03    5444字    11分钟    Jacob.lsx     Feature Detection  Features Descriptors  CV  特征提取  特征描述子  计算机视觉

ORB 特征

ORB 算法原理 ORB (Oriented FAST and Rotated BRIEF)1 算法是对 FAST 特征点检测和 BRIEF (Binary robust independent elementary features)2 特征描述子的一种结合,在原有的基础上做了改进与优化,使得 ORB 特征具备多种局部不变性,并为实时计算提供了可能34。 ...

2019-05-28    3005字    6分钟    Jacob.lsx     Feature Detection  Features Descriptors  CV  特征提取  特征描述子  计算机视觉

Haar 特征

简介 Haar 特征1是一种用于目标检测或识别的图像特征描述子,Haar 特征通常和 AdaBoost 分类器组合使用,而且由于 Haar 特征提取的实时性以及 AdaBoost 分类的准确率,使其成为人脸检测以及识别领域较为经典的算法。 多种Haar-like特征 在 Haar-like 特征23提出之前,传统的人脸检测算法一般是基于图像像素值进行的,计算量较大且实时性较差。 Papageorgiou 等人最早将 Harr 小波用于人脸特征表示,Viola 和 Jones 则在此基础上,提出了多种形式的 Haar 特征。Lienhart 等人对 Haar 矩形特征做了进一步的扩展,加入了旋转 $45^{\circ}$ 的矩形特征,因此现有的 Haar 特征模板主要如下图所示: ...

2019-05-25    2547字    6分钟    Jacob.lsx     Features Descriptors  CV  特征描述子  计算机视觉

Copyright © 2025 Jacob.lsx's Blog. All Rights Reserved. ‌ ‌